The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by *Burkholderia cepacia* CC-Al74

Ta-Fa Lin, Hsin-I Huang, Fo-Ting Shen, Chiu-Chung Young *

Department of Soil and Environmental Sciences, National Chung Hsing University, 250, Kuo-Kaung Road, Taichung, Taiwan 40227, ROC

Received 1 October 2003; received in revised form 7 February 2005; accepted 8 February 2005

Available online 13 December 2005

Abstract

Burkholderia cepacia CC-Al74 with a high ability for solubilizing tricalcium phosphate (TCP) was used to study the P-solubilization mechanism. We collected filtrates able to solubilize TCP from the cultures of strain CC-Al74 and demonstrated that the P-solubilization increased from 0 \(\mu \text{g} \text{ml}^{-1} \) to 200 \(\mu \text{g} \text{ml}^{-1} \) during exponential growth, when the pH decreased from 8 to 3. HPLC-analysis revealed that the solubilization of TCP was mainly caused by the release of 16.3 mM gluconic acid. At this concentration, gluconic acid was capable of solubilizing 376 \(\mu \text{g} \text{ml}^{-1} \) of TCP whereas water at pH 3 only solubilized 35 \(\mu \text{g} \text{ml}^{-1} \). The difference is due to the final H\(^+\) concentrations which were 13.5 mM and 1 mM in 16.3 mM gluconic acid and deionized water, respectively at pH 3.

\(\text{© 2005 Elsevier Ltd. All rights reserved.} \)

Keywords: *Burkholderia cepacia*; Phosphate solubilizing; Bacteria; Solubilization mechanisms; Gluconic acid

1. Introduction

Phosphorus is an essential macronutrient for plants and is added to soil in the form of phosphatic fertilizers. It has been estimated that in some soil up to 75% of applied phosphate fertilizer may become unavailable to the plant because of mineral phase reprecipitation (Goldstein, 1986; Sundara et al., 2002). Phosphate-solubilizing bacteria (PSB) are able to convert insoluble phosphates into soluble forms (Illmer and Schinner, 1995; Hilda et al., 2000; Peix et al., 2002; Viverk and Singh, 2001; Sudhakara et al., 2002) and have therefore been used to enhance the solubilization of reprecipitated soil P for crop improvement. (Young et al., 1986; Young, 1990; Shekhar et al., 2000). Several studies have shown that the release of low molecular weight organic acids is responsible for solubilizing insoluble phosphate (Sperber, 1957; Goldstein, 1995; Kim et al., 1997; Hilda and Fraga, 1999). The most efficient mineral phosphate solubilization (MPS) phenotype in Gram-negative bacteria results from extracellular oxidation of glucose via the quinoprotein glucose dehydrogenase to gluconic acid (Goldstein and Liu, 1987; Liu et al., 1992; Kpomblekou-A and Tabatabai, 1994; Hilda and Fraga, 1999; Hilda et al., 2000). The resulting pH change and reduction potential are thought to be responsible for the dissolution of tricalcium phosphate in the culture medium.

In the current study, we collected filtrates from the PSB *Burkholderia cepacia* CC-Al74 cultures grown under Ca\(_3\)(PO\(_4\))\(_2\)-limited condition. Our objectives were to analyze the organic acid composition of the filtrates and to test if the organic acids present were capable of solubilizing calcium phosphate.
2. Methods

2.1. Bacteria strain, media and growth conditions

The phosphate-solubilizing bacterium CC-Al74 used in this experiment was isolated from soil in Pingdong, Taiwan and identified as B. cepacia based on its 16S ribosomal DNA (rDNA) sequence. Genomic DNA was extracted from strain CC-Al74 by using the MO BIO UltraClean Microbial DNA Kit (MO BIO, USA) according to the protocol supplied by the supplier. The 16S rRNA genes were amplified by PCR with forward primer 1F (5’-GAG TTT GAT CAT GGC TCA G-3’) and reverse primer 7R (5’-TGA CGG GCG GTG TGT ACA A-3’) (Broius et al., 1978; Edwards et al., 1989; Young et al., 2005). The PCR products were purified using the Montage DNA Gel Extraction Kit (Millipore, USA), and were used as template for cycle-sequencing. The sequencing reaction products were analyzed using an ABI PRISM 310 Genetic analyzer (Perkin-Elmer). The sequence was submitted to GenBank under accession number AY149233. Strain CC-Al74 was deposited at the Bioresource Collection and Bank under accession number AY149233. Strain CC-Al74 was identified as B. cepacia CC-Al74 to the reference isolate is 100%. It showed that the homology of 16S ribosomal sequence of strain CC-Al74 in BCRC is 14256.

For the assay of mineral phosphate solubilization (MPS), the strain was cultivated in modified liquid tricalcium phosphate (TCP) medium (Young, 1990) containing the following ingredients per liter: 10 g sucrose, 0.27 g NH₄NO₃, 0.2 g KCl, 0.001 g MgSO₄·6H₂O, 0.001 g Fe₂(SO₄)₃·7H₂O, 0.001 g MnSO₄·4H₂O and 0.05 g Ca₃(PO₄)₂. The pH of the medium was adjusted to 6.8 with 0.1 M HCl before autoclaving. The concentration of Ca₃(PO₄)₂ in liquid TCP medium was 50 mg l⁻¹, a limiting concentration that was assumed to allow detection of solubilizing exudates.

Strain CC-Al74 was inoculated into 500 ml liquid medium in 1 L conical flasks (ca. 10⁵ cfu ml⁻¹) and incubated on a gyratory shaker (120 rpm) at 25 °C. Samples were taken at 0, 28, 52, 76, 100, 130, 151, 174 and 199 h. Autoclaved, uninoculated medium served as control. A 5-ml sample was removed from each flask and centrifuged at 10,000g for 5 min (HETTICH, MIKRO 22R, Germany). The supernatant was filtered through a 0.22 μm Millipore filter and assessed for bacterial population, pH, organic acids, and P-solubilizing capability.

2.2. Effects of gluconic acid and 2-keto-gluconic acid on TCP solubilization

The pH of 16.3 mM gluconic acid and 3.8 mM 2-keto-gluconic acid was adjusted to pH 3 with HCl for the analysis of the P-solubilizing capability. Uninoculated medium and deionized water at pH 3 served as control and blank, respectively.

2.3. Analysis

Cell counts of strain CC-Al74 were obtained by dilution-plating on solid TCP medium. The pH of culture filtrates was measured with a pH meter (SUNTEX, SP-2200, Taiwan). The determination of organic acids was carried out by HPLC (Hitachi L-5000, Japan; detector: Hitachi L-3000, Japan; column: Bio-Red aminex HPX-87H, US; solvent: 10.8% acetonitrile in 0.0035 M H₂SO₄; flow: 0.5 ml min⁻¹; temperature: 35 °C; UV: detector at 210 nm; during: 35 min; injection volume: 20 μl). The HPLC-system was capable of distinguishing 13 kinds of organic acids including citric, gluconic, 2-keto-gluconic, succinic, glycolic, lactic, fumaric, formic, acetic, butyric, isobutyric, valeric and isovaleric acid.

P-solubilization was tested by incubating 1 ml of filtrate at 25 °C with 10 mg TCP under shaking condition (120 rpm). After 1 h, the assay mixtures were centrifuged at 10,000g for 5 min. The supernatant was filtered through a 0.22 μm Millipore filter and assessed for dissolved P. The P-solubilizing capability was calculated as the difference of dissolved P between added (10 mg TCP) and non-added sample.

Values are given as means ± S.D. for triplicate samples. Data were analyzed using Microsoft Excel software or Duncan’s multiple range test. Differences in the results were considered to be significant at the P < 0.05 level.

3. Results and discussion

3.1. Properties of solubilizing TCP of B. cepacia CC-Al74

The homology of 16S ribosomal sequence of strain CC-Al74 to the reference isolate is 100%. It showed that strain CC-Al74 was identified as B. cepacia.

Changes in the population, pH and P-solubilizing capability of the culture medium are represented in Fig. 1. The population reached a maximum cell density of about 10⁷ cfu ml⁻¹ after 52 h. The P-solubilizing capability increased from zero to 200 μg ml⁻¹ as the pH decreased from 8 to 3. Strain CC-Al74 released two kinds of organic acids at 100 h and 130 h, namely 16.3 mM gluconic acid and 3.8 mM 2-keto-gluconic acid (Fig. 2). The gluconic acid and 2-keto-gluconic acid produced by strain CC-Al74 potentially play a vital role in the P-solubilization, since the most efficient MPS phenotype in Gram-negative bacteria results from extracellular oxidation of glucose via the quinoprotein glucose dehydrogenase (Goldstein, 1995), resulting in acidification of the region adjacent to the cell (Goldstein and Liu, 1987; Liu et al., 1992; Hilda and Fraga, 1999; Hilda et al., 2000).

The concentration of gluconic acid and 2-keto-gluconic acid was very low until after 76 h whereas dissolved...
P increased from zero to 160 µg ml\(^{-1}\) as the pH decreased from 8 to 3. The process of acidification and chelation by gluconic acid and 2-keto-gluconic acid dissolved TCP in cultural medium. The chelation property of gluconic acid enables it to form insoluble complex with Ca\(^{2+}\) liberating phosphates (Kpomblekou-A and Tabatabai, 1994; Reyes et al., 1999; Shekhar et al., 2000).

3.2. Effects of gluconic acid and 2-keto-gluconic acid on TCP solubilization

The P-solubilizing capability of bacterial filtrate reached a plateau at pH 3 (Fig. 1), when 16.3 mM gluconic acid and 3.8 mM 2-keto-gluconic acids were detected in the filtrates of strain CC-Al74 (Fig. 2). Therefore we further explored the P-solubilizing capability of 16.3 mM gluconic acid and 3.8 mM 2-keto-gluconic acid at pH 3. The P-solubilizing capability of 16.3 mM gluconic acid and 3.8 mM 2-keto-gluconic acid were 376 µg ml\(^{-1}\) and 67 µg ml\(^{-1}\), respectively at pH 3 (Table 1). The final pH of gluconic acid and 2-keto-gluconic acid after equilibration were 4.7 and 5.7, respectively. The P-solubilizing capability of gluconic acid was much higher compared to 2-keto-gluconic acid in the filtrate from strain CC-Al74 culture.

The P-solubilizing capability in culture solution was 200 µg ml\(^{-1}\), and that of 16.3 mM gluconic acid in deionized water was 376 µg ml\(^{-1}\) at pH 3 (Table 1). Therefore, the filtrates of strain CC-Al74 were capable of solubilizing only 53% of the total P released by gluconic acid in deionized water. Presumably the metals present in liquid TCP medium such as Fe, Ca, Mn, Mg, K reacted with dissolved P resulting in the conversion of soluble phosphate in the filtrates of CC-Al74 into insoluble forms (Corbridge, 1980; Snoeyink and Jenkins, 1982; Stumm and Morgan, 1996). Similarly, the P-solubilizing capability in deionized water was greater than that of uninoculated medium (Table 1), which can also be attributed to the reaction of metals in medium with soluble phosphate.

In addition, the P-solubilizing capabilities of 16.3 mM gluconic acid and deionized water were 376 µg ml\(^{-1}\) and 35 µg ml\(^{-1}\) at pH 3 (Table 1). When the pH of 16.3 mM gluconic acid and deionized water were modified to 3, the theoretical concentrations of protons were 13.5 mM and 1 mM, respectively, showing clearly that the

Table 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dissolved P (µg ml(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture filtrate</td>
<td>200 ± 4.8b(^a)</td>
</tr>
<tr>
<td>16.3 mM D-gluconic acid</td>
<td>376 ± 4.9a</td>
</tr>
<tr>
<td>3.8 mM 2-keto-gluconic acid</td>
<td>67 ± 3.3c</td>
</tr>
<tr>
<td>Uninoculated medium (CK)</td>
<td>9 ± 0.5e</td>
</tr>
<tr>
<td>Deionized water (BK)</td>
<td>35 ± 1.8d</td>
</tr>
</tbody>
</table>

\(^a\) Values (means ± S.D., \(n = 3\)) within a row followed by different letters are significantly different (\(P < 0.05\)) by Duncan’s multiple range test.
concentration of protons in the solution is an important factor for P-solubilization.

Acknowledgements

The authors are grateful to Dr. Chen-Chung Tan, Dr. Shiaw-hwa Su, Dr. Horng-Ji Chen and Dr. Arun Bhagwath for useful discussion. We also thank Miss Mei-Hua Hung and Mr. Hsien-Li Lyu for technical assistance.

References

